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Abstract

Rawls famously claimed that choices based on the Difference Principle coincide with
the choices of any rational individual in the Original Position. In this paper, we
develop a logic in which we can express and prove Rawls’ thesis in its object language.
Starting from a standard semantics of choice under uncertainty, we enrich our models
in order to represent uncertainty about one’s position. We then introduce a sound
and strongly complete logic that allows us to speak about agents’ positions and their
derived utilities, and that can express changes in the uncertainty about those positions
using dynamic operators. Finally, we show how this logic allows us to define various
types of obligation based on a Rawlsian notion of procedural fairness.
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1 Introduction

In his Theory of Justice, John Rawls puts forward principles of justice that he
argues should be used to determine the basic structure of society [16]. What
made Rawls innovative, however, were not the principles themselves, but the
way in which he argued for them [15]. Famously, he makes use of a method-
ological device known as the Original Position, which he describes as

[...] a purely hypothetical situation characterized so as to lead to a certain
conception of justice. Among the essential features of this situation is that
no one knows his place in society, his class position or social status, nor does
any one know his fortune in the distribution of natural assets and abilities,
his intelligence, strength, and the like. [16, p. 11]

So Rawls’ basic idea is to conceive of a situation in which a person is deprived
of morally irrelevant knowledge and to ask: what would such a person choose?

One of the principles that would characterize the resulting choices, accord-
ing to Rawls, is the Difference Principle, which states that “social and economic
inequalities are to be arranged so that they are to the greatest benefit of the
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least advantaged.” [16, p. 266]. Rawls claims that what one ought to choose
according to the Difference Principle coincides with what a rational individual
would choose, if it were fully uncertain about the position it occupies in society.
Henceforth we refer to this claim as Rawls’ thesis. 2

In this paper, we provide a logical analysis of Rawls’ thesis. We first
set out general models of choice under uncertainty and define notions of
individually rational choices and fair choices (Section 2). Next, we refine these
models in such a way that we can verify Rawls’ thesis (Section 3). In Section
4 we introduce a logic that can express key features of those models and has
Rawls’ thesis as a validity. Finally, we show how our logic can handle vari-
ous deontic operators based on Rawls’ notion of procedural fairness (Section 5).

Existing Formal Models Rawls’ publication of A Theory of Justice has
spawned research both of informal and formal nature. Most of the formal
literature is focused on the Rawls/Harsanyi dispute over how exactly to char-
acterize the Original Position and how agents would choose, once placed in
such a situation. John Harsanyi [9] conceives of the situation as one of choice
under risk where, for any given outcome, the agent can reason based on some
probability estimate of how likely it is that that outcome occurs. With this in
place, Harsanyi argues that a rational individual would choose according to the
principles of expected utility theory. In contrast, Rawls thinks of the situation
as one of choice under uncertainty, where no such probabilities are given [16,
p. 134].

Given a great deal of uncertainty and the risks associated with choosing
suboptimal options, Rawls argues that individuals would choose according to
the Maximin rule (cf. Section 2.2). In contrast, most of the formal work on the
Original Position follows Harsanyi’s characterization by relying on a uniform
probability distribution that assigns a chance of 1

n to an individual ending up
in one of the n possible positions (see e.g. [6,8,13,17]).

In the present paper, we bracket the Rawls/Harsanyi dispute and stay as
close as possible to Rawls’ conception of the Original Position as a situation of
non-strategic choice under uncertainty (cf. [7]).

2 Choice Under Uncertainty

In this section we present general models of choice under uncertainty and intro-
duce a formal language that can express some of Rawls’s fundamental concepts.

2 Rawls states: “To say that a certain conception of justice would be chosen in the original
position is equivalent to saying that rational deliberation satisfying certain conditions and
restrictions would reach a certain conclusion. If necessary, the argument to this result could
be set out more formally.” [16, p. 120]. What we call Rawls’ thesis is thus the more concrete
version of this claim where the Difference Principle is put forward as the conception of justice
in question.
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2.1 Models of Choice Under Uncertainty

Our models are inspired by the tradition of STIT logics, i.e. logics that feature
modal operators of the type “agent i sees to it that”, which are interpreted
in terms of the states of affairs that are guaranteed by the (past or current)
choice(s) of i. The classic exposition of STIT logic is Belnap et al. [4]. In [10],
Horty shows that this framework can be combined with utilitarian ideas, in
order to interpret various deontic notions such as individual and group oughts.
Kooi and Tamminga [14,18] use STIT models without a temporal component,
but including agent-relative utilities. Here, we further simplify the models of
[14] by working with a single set of choices and a finite 3 set of utility values.

Fix a finite set Agt of agents, a finite set N = {1, 2, . . .} ⊂ N of utilities,
and a countable set Q = {q, q′, . . .} of propositional variables. We use i, j and
n,m as metavariables for agents and values respectively.

Definition 2.1 A model of choice under uncertainty is a tuple M =
〈S,U,C, V 〉, where S 6= ∅ is a set of states, U : S × Agt → N is a utility
function, C is a partition of S into choices, and V : Q → ℘(S) is a valuation
function.

Each state s ∈ S can be seen as a possible outcome of the choice situation.
The utility function U specifies, for each state s and agent i, the utility U(s, i)
that i receives at s. Note that choices are sets of states X ∈ C. This means
that, as in the traditional STIT-based accounts, we identify choices with the
set of states they leave open. Unlike in STIT, we do not attribute choices to (a)
particular (group of) agents. The focus is rather on how choices affect agents,
not on who is choosing or acting. Depending on the particular perspective we
take, e.g. that of an individual or that of society at large, some of the choices
will be better or worse than others. Correspondingly, one may interpret the
choices as those of a social planner or policy-maker, even if that person is herself
a member of Agt.

If s ∈ X, then s is a possible outcome of choosing X. We write C(s) for the
unique choice X ∈ C such that s ∈ X. Figure 1 represents a simple model of
choice under uncertainty for two agents i and j, with two choices X = {s1, s2}
and Y = {s3, s4}. Here, the couples (n,m) represent the utility function, where
n = U(s, i) and m = U(s, j). For instance, at state s1, agent i receives a utility
of 3 whereas agent j receives a utility of 1.

(3, 1) (2, 4) (2, 2) (1, 4)

X Y

s1 s2 s3 s4

Fig. 1. A model of choice under uncertainty.

3 The generalization to an infinite set of utility values is left for future work.
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2.2 Two Standards of Admissibility

Given a model of choice under uncertainty M, the utility function U in-
duces agent-relative preferences over outcomes: i weakly prefers s over s′ iff
U(s, i) ≥ U(s′, i). For example, in Figure 1 agent i weakly prefers s1 over s2

since U(s1, i) ≥ U(s2, i). However, since we are considering what choices a ra-
tional agent should make, we should specify how preferences over states induce
preferences over choices. In other words, we need to specify a lifting criterion.
Four such lifting criteria are given in Table 1, which is based on [19]. Each of
these lifting criteria give us a weak preference relation over the set of choices
in a model.

Where l ∈ {∀∀,∀∃,∃∀,∃∃} the strict preference relation Ali is defined as:
X Ali Y iff X wli Y and Y 6wli X. In words, X being strictly preferred to
Y means that X is preferred to Y while Y is not preferred to X. Following
common practice, we assume that it is rational to choose X for an agent i iff
there is no other choice Y such that i strictly prefers Y to X. We call such
rational choices admissible for the agent in question, and treat rationality and
admissibility as interchangeable notions.

Definition 2.2 Where M = 〈S,U,C, V 〉 is a model of choice under uncer-
tainty, i ∈ Agt, and l ∈ {∀∀,∀∃,∃∀,∃∃}: the set of i-admissiblel choices in M
is

Adml
i(M) =df {X ∈ C | for no Y ∈ C : Y Ali X}.

l = Preference Relation

∀∀ X w∀∀i Y =df ∀s ∈ X,∀s′ ∈ Y : U(s, i) ≥ U(s′, i)

∀∃ X w∀∃i Y =df ∀s ∈ X,∃s′ ∈ Y : U(s, i) ≥ U(s′, i)

∃∀ X w∃∀i Y =df ∃s ∈ X,∀s′ ∈ Y : U(s, i) ≥ U(s′, i)

∃∃ X w∃∃i Y =df ∃s ∈ X,∃s′ ∈ Y : U(s, i) ≥ U(s′, i)

Table 1
Lifting criteria. Here, X and Y are sets of states.

Maximin In what follows, we focus on the Maximin criterion, i.e. the lifting
criterion denoted by ∀∃. We hence take Adm∀∃i as defining rational choice
under uncertainty. We return to the other lifting criteria in Section 5. Until
then, we omit the superscript l in notation.

The Maximin principle is usually considered typical for risk-averse agents.
Rawls states that “the maximin rule is not, in general, a suitable guide for
choices under uncertainty” while he does defend Maximin in situations “marked
by certain special features” [16, pp. 133]. These features are:

• knowledge of likelihoods is impossible, or at best extremely insecure;

• the person choosing has a conception of the good such that he cares very
little, if anything, for what he might gain above the minimum stipend that
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he can, in fact, be sure of by following the maximin rule;

• the rejected alternatives have outcomes that one can hardly accept.

Rawls concludes that because the Original Position has these three features,
the Maximin criterion is the most appropriate one in this context.

The Difference Principle The principle of justice that we focus on in this
paper is the Difference Principle. Informally, it states that we should maximize
the gains of the least well-off. Rawls warns us that the Difference Principle
should not be mistaken for the Maximin rule [16, p. 72]:

The maximin criterion is generally understood as a rule for choice under
great uncertainty, whereas the difference principle is a principle of justice. It
is undesirable to use the same name for two things that are so distinct.

To define the Difference Principle in exact terms, we need some more nota-
tion. For any state s in a given model, let U(s, ∗) denote the smallest n ∈ N
such that, for some i ∈ Agt, U(s, i) = n. Intuitively, U(s, ∗) is the utility of
the agent that is the least well-off at state s. One may say that, according to
the Difference Principle, a state s is at least as good as a state s′ if and only
if U(s, ∗) ≥ U(s′, ∗), i.e. whenever the least well-off at state s is at least as
well-off as the least well-off at state s′.

Just as before, we need to lift this preference relation on states in order to
obtain preferences over choices. In line with the preceding, we use the Maximin
criterion. 4 This gives us the following definitions:

Definition 2.3 Where M = 〈S,U,C, V 〉 is a model of choice under uncertainty
and X,Y ∈ C: X w∀∃∗ Y iff ∀s ∈ X,∃s′ ∈ Y : U(s, ∗) ≥ U(s′, ∗).
Definition 2.4 Where M = 〈S,U,C, V 〉 is a model of choice under uncer-
tainty, the set of Difference admissible choices in M is

Adm∗(M) =df {X ∈ C | For no Y ∈ C : Y A∀∃∗ X}.
In our example from Figure 1, it can be easily verified that X A∀∃i Y ,

Y A∀∃j X, X w∀∃∗ Y , and Y w∀∃∗ X. Hence, Admi(M) = {X}, Admj = {Y },
and Adm∗ = {X,Y }. In other words, both X and Y are difference admissible
in this model, while only X is admissible for i and only Y is admissible for j.

In what follows, we will sometimes use “∗” to denote “the least well-off”
(at a given state in a given model). This convention allows us to present our
results in a compact way.

2.3 Expressing Admissibility in a Formal Language

Here, we introduce a formal language that allows us to express i.a. that the
current choice is i-admissible and/or difference admissible. Let L be defined
by the following Backus-Naur Form (BNF):

ϕ := q | uni | ¬ϕ | ϕ ∨ ϕ | �ϕ | �c ϕ

4 One can define alternative “fairness rankings”, using the other lifting criteria from Table
1. We leave the study of such rankings for future work.
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where q ranges over Q, i over Agt, and n over N . The constant uni expresses
that agent i receives a utility of n. � is a universal modality: �ϕ means that
ϕ is true at all states in the model; � denotes its dual. �c ϕ expresses that the
current choice guarantees that ϕ is the case; the dual of �c is denoted by �c .
�c is a normal modal operator, similar in spirit to the “Chellas STIT” [5,11].
Both � and �c are modal operators of type S5.

Definition 2.5 Where M = 〈S,C,U, V 〉 is a model of choice under uncertainty
and s ∈ S:

(SC1) M, s |= q iff s ∈ V (q)

(SC2) M, s |= ¬ϕ iff M, s 6|= ϕ

(SC3) M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

(SC4) M, s |= �c ϕ iff for all s′ ∈ C(s), M, s′ |= ϕ

(SC5) M, s |= �ϕ iff for all s′ ∈ S, M, s′ |= ϕ

(SC6) M, s |= uni iff U(s, i) = n.

Let us use the example from Figure 1 to illustrate some of these semantic
clauses. Let M correspond to the model in Figure 1 with V (q) = {s1, s3, s4}.
Since U(s1, i) = 3 and by applying (SC6), we obtain that M, s1 |= u3

i . In view
of (SC4) and since U(s2, i) = 2, M, s1 6|= �c u3

i . Likewise, since q is false at s2,
M, s1 6|= �c q. However, by (SC6) and since q is true at both s3 and s4, we have
M, s1 |= ��c q.

With the language L, we can express the notions of individual admissibility
and difference admissibility that were introduced in Section 2.2. In order to
explain this, we need some preparatory work. Where † ∈ Agt ∪ {∗} and where
s is a state in some model M, let GM(s, †) be the set of all n ∈ N such that
for all s′ ∈ C(s), U(s′, †) ≥ n. When n ∈ GM(s, †), we say that utility n
is guaranteed for † at s. A little reflection on the Maximin criterion and our
definitions of admissibility gives us:

Lemma 2.6 C(s) ∈ Adm†(M) iff for all s′ ∈ S: GM(s′, †) ⊆ GM(s, †).
Let s be a state in some model of choice under uncertainty, and let X =

C(s). Using the formal language L, we can express that, for any utility n ∈ N
and for any other choice Y in the model, if Y guarantees n, then so does X –
see Table 2. Relying on Lemma 2.6, we immediately obtain:

Theorem 2.7 Where M = 〈S,U,C, V 〉 is a model of choice under uncertainty,
s ∈ S, and † ∈ Agt ∪ {∗}: C(s) ∈ Adm†(M) iff M, s |= Adm†.

Proof. C(s) ∈ Adm†(M) iff [by Lemma 2.6] for all s′ ∈ S, GM(s′, †) ⊆
GM(s, †) iff for all s′ ∈ S, for all n ∈ N , if n ∈ GM(s′, †) then n ∈ GM(s, †) iff
[in view of Table 2] for all n ∈ N , for all s′ ∈ S, if M, s′ |= gn† , then M, s |= gn†
iff for all n ∈ N , if there is an s′ ∈ S such that M, s′ |= gn† , then M, s |= gn† iff
[by the semantic clauses] for all n ∈ N , M, s |= �gn† → gn† iff M, s |= Adm†. 2

Theorem 2.7 tells us that we can express that a given option is individually
admissible (according to the Maximin criterion) or difference admissible in L.
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Abbr. Definition Interpretation

u≥ni
∨
m≥n u

m
i The utility of i is at least n.

un∗ (
∨
i∈Agt u

n
i ) ∧ (

∧
j∈Agt u

≥ n
j ) The utility of the least well-off is n.

u≥n∗
∨
m≥n u

m
∗ The utility of the least well-off is at

least n.

gni �c u≥ni A utility of n is guaranteed for i.

gn∗ �c u≥n∗ A utility of n is guaranteed for the least

well-off.

Admi

∧
n∈N ( �gni → gni ) The given choice is i-admissible.

Adm∗
∧
n∈N ( �gn∗ → gn∗ ) The given choice is difference admissi-

ble.

Table 2
Some useful abbreviations. Here, † ranges over Agt ∪ {∗}.

Recall however that, according to Rawls’ thesis, these two notions are only
related given a specific type of uncertainty, viz. uncertainty about the position
one occupies in society. In what follows, we show how our semantics and formal
language can be refined in order to represent such uncertainty.

3 A Semantics for Rawls’ Thesis

The kind of uncertainty we are dealing with in the Original Position is, at
bottom, uncertainty about who gets which position; from that, one then derives
uncertainty about the agent’s utilities. To make this idea precise, we introduce
a more specific class of models of choice under uncertainty in Section 3.1.
Next, we define a type of updates on those models, which capture changes
in position uncertainty (Section 3.2). Finally, we show how, with the formal
instrumentarium thus introduced, we can make Rawls’ thesis exact (Section
3.3).

3.1 Models of Choice Under Position Uncertainty

Fix a finite, non-empty set of positions P = {p, p′, . . .}, with |P | ≤ |Agt|. 5

Here, one should think of a position in rather abstract terms: a position is
simply that which determines the utility of the agent at a given state.

Definition 3.1 A model of choice under position uncertainty is a tuple M0 =
〈W,Π, C0, U0, V 0〉 where W 6= ∅ is the set of worlds, Π is a non-empty set
of position assignments π : Agt → P that are surjective, C0 is a partition of
W , U0 : W × P → N is a position-utility function, and V 0 : Q → ℘(W ) is a
valuation function.

5 We require that the number of positions does not exceed that of agents because we will
need the presupposition that every position is occupied by at least one agent for Rawls’ thesis
to hold – see also footnote 7.
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Definition 3.2 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty, the corresponding model of choice under uncertainty is
M = 〈S,C,U, V 〉, where:

• S =df W ×Π

• for all (w, π) ∈W ×Π : U((w, π), i) =df U
0(w, π(i))

• C =df {{(w, π) | w ∈ X,π ∈ Π} | X ∈ C0}
• V (q) =df {(w, π) | w ∈ V 0(q), π ∈ Π}

In a model of choice under position uncertainty, states are made up of two
components: a world w that determines what factual states of affairs obtain and
what utilities each position gets, and a position assignment π that determines
the position of each agent. 6 Note that we require the position assignment
functions to be surjective. This means that every position in society is occupied
by at least one agent. 7

This in turn allows us to decompose the utility function U from Section 2
into two parts. First, U0 specifies the utilities of every position, for every way
the world may end up being. So U0(w, p) = n means that at world w, any
agent with position p receives a utility of n. Second, the position assignment π
specifies the position an agent gets in society. The agent-utility of i at a state
s = (w, π) is then defined as U0(w, π(i)): it is the position-utility at w of the
position to which i is assigned at s.

In view of Definition 3.2, each model of choice under position uncertainty
corresponds to a model of choice under uncertainty. Given this, we can apply
our earlier definitions of individual and difference admissibility to models of
choice under position uncertainty.

Figure 2 represents two models of choice under position uncertainty. In
M0

1, Π is a singleton {π1}. In M0
2, Π consists of two position assignments.

Note that this difference affects which choices are admissible for each of the
agents, though it does not affect which choices are difference admissible. In
particular, Admi(M

0
1) = {X}, Admj(M

0
1) = {Y }, and Adm∗(M

0
1) = {X,Y },

while Admi(M
0
2) = Admj(M

0
2) = Adm∗(M

0
2) = {X,Y }.

3.2 Updates of Position Uncertainty

Given a model M0 = 〈W,Π, C0, U0, V 0〉, the parameter Π specifies our uncer-
tainty about who gets what position in society. Importantly, and in line with
our agent-independent notion of choice, this uncertainty is agent-independent.
For instance, if there are π, π′ ∈ Π and p, p′ ∈ P such that π(i) = p and

6 Here, a warning is in place: since π determines which agent gets which utility, the “factual
states of affairs” are limited to those statements that do not depend, logically speaking, on
who gets what. For instance, “agent 2 gets a utility of 5” is not a “factual state of affairs” on
this reading. In principle, we could also make the truth of propositional variables dependent
on both w and π. This would not affect our main results in this paper.
7 This presupposition is necessary for Rawls’ thesis. Indeed, otherwise the “worst-off” agent
given the current position assignment may be guaranteed to get a higher utility than what
some agents could have in positions that are currently not occupied.
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X Y

w1 w2 w3 w4

(3,1) (2,4) (2,2) (1,4)

(3, 1) (2, 4) (2, 2) (1, 4)

U0

π1

(a) The model M0
1 with Π = {π1}.

X Y

w1 w2 w3 w4

(3,1) (2,4) (2,2) (1,4)

(3, 1) (2, 4) (2, 2) (1, 4)

U0

π1

(1, 3) (4, 2) (2, 2) (4, 1)π2

(b) The model M0
2 with Π = {π1, π2}.

Fig. 2. Two models of choice under position uncertainty. Where (n,m) ∈ N ×N , n
denotes the utility of p1, and m denotes the utility of p2 at the given world. The two
position assignments are: π1(i) = p1, π1(j) = p2 and π2(i) = p2, π2(j) = p1.

π′(i) = p′ (with p 6= p′), then this means that whoever is choosing does not
know whether i occupies position p, or rather position p′.

Consequently, a change in position uncertainty amounts to an update of
the parameter Π. We will define such updates in general, after which we apply
them to Rawls’ thesis. In what follows, let Π∗ denote the set of all position
assignments, i.e. all surjective functions π : Agt→ P .

Definition 3.3 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty and where ∅ 6= Π′ ⊆ Π∗, M

0
Π′ = 〈W,Π′, C0, U0, V 0〉.

In other words, all that is changed by an update (if anything) is the set
of position assignments that are considered possible. With this general type
of update, we can model both increasing and decreasing uncertainty about
position assignments. At one end of the spectrum, updates with a singleton {π}
amount to restricting the model to a single position assignment. At the other
end, updates with Π∗ amount to making every position assignment possible.

Returning to our example in Figure 2, it can be easily observed that the
model on the right hand side is obtained by updating the model on the left
hand side with {π1, π2}, and conversely, the model on the left hand side is
obtained by updating the model on the right hand side with {π1}.

3.3 Rawls’ Thesis

Recall that in the Original Position, we do not know anything about our posi-
tion in society. So if, for a given model M0 of choice under position uncertainty,
we ask what an agent i would choose in the Original Position, we are in fact
asking what i would choose in the updated model M0

Π∗
. On this analysis,

Rawls’ thesis says that a given choice is difference admissible in M0 if and only
if the “corresponding” choice in M0

Π∗
is i-admissible in M0

Π∗
.

In order to make this notion of correspondence precise we need some extra
notation. Given any model M0 = 〈W,Π, C0, U0, V 0〉, we let M0

∗ = M0
Π∗

=
〈W,Π∗, C0, U0, V 0〉, and we use C∗, U∗, and V∗ to refer to the set of choices,
the agent-utility function, and the valuation function of the model M∗ of choice
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under uncertainty that corresponds to M0
∗ (cf. Definition 3.2).

Our proof of Rawls’ thesis crucially relies on the observation that the set of
guaranteed utilities for the least well-off at a given state in the original model
equals the set of guaranteed utilities for any individual i in the corresponding
state in the Original Position. Formally:

Lemma 3.4 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under posi-

tion uncertainty, s ∈W ×Π, and i ∈ Agt: GM0

(s, ∗) = GM0
∗(s, i).

Proof. Let i ∈ Agt and n ∈ N . We have: n ∈ GM0

(s, ∗) iff [by the definition

of GM0

(s, ∗)] for all s′ ∈ C(s), U(s′, ∗) ≥ n iff [by the definition of U(∗, s)]
for all i ∈ Agt and s′ ∈ C(s), U(s′, i) ≥ n iff [since every position assignment
is surjective] for all p ∈ P and all w′ ∈ C0(w), U0(w′, p) ≥ n iff [by the

definition of Π∗] for all s′ ∈ C∗(s), U∗(s, i) ≥ n iff [by the definition ofGM0
∗(s, i)]

n ∈ GM0
∗(s, i). 2

Note also that, whatever utility is guaranteed for i at a state (w, π) in a
model M0, is also guaranteed for i at every state (w, π′) in M0. Formally:

Fact 3.5 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under posi-

tion uncertainty, w ∈ W , π, π′ ∈ Π, and i ∈ Agt ∪ {∗}: GM0

((w, π), i) =

GM0

((w, π′), i).

Theorem 3.6 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty, (w, π) ∈ W × Π, and i ∈ Agt: C(w, π) ∈ Adm∗(M0) iff
C∗(w, π) ∈ Admi(M

0
∗). (Rawls’ Thesis)

Proof. C(w, π) ∈ Adm∗(M
0) iff [by Lemma 2.6] for all (w′, π′) ∈ W × Π,

GM0

((w′, π′), ∗) ⊆ GM0

((w, π), ∗) iff [by Lemma 3.4] for all (w′, π′) ∈ W × Π,

GM0
∗((w′, π′), i) ⊆ GM0

∗((w, π), i) iff [by Fact 3.5] for all (w′, π′) ∈ W × Π∗,

GM0
∗((w′, π′), i) ⊆ GM0

∗((w, π), i) iff [by Lemma 2.6] C∗(w, π) ∈ Admi(M
0
∗). 2

4 A Logic of Choice Under Position Uncertainty

In order to express Rawls’ thesis syntactically, we enrich the formal language
L from Section 2. First, we define a static modal language in which we can
express position utilities and position assignments, and provide an axiomati-
zation for the resulting logic (Section 4.1). Next, we add dynamic operators
that can express changes in position uncertainty and give reduction axioms for
them (Section 4.2). After this preparatory work, we show that Rawls’ thesis
corresponds to a validity of the resulting logic (Section 4.3).

4.1 Static Part

Formal Language Let L+ be defined by the BNF:

ϕ := q | aip | unp | ¬ϕ | ϕ ∨ ϕ | �ϕ | �c ϕ | �ϕ

where q ranges over Q, i over N , p over P , and n over N . The constant aip
expresses that agent i occupies position p, while unp expresses that any agent
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with position p gets utility n. The only new modality is �. This operator
allows us to talk about all states that have the same world component (see
(SC9) below). In other words, �ϕ expresses that “ϕ is the case, no matter
which position the agents occupy”.

The following definition gives the semantic clauses for aip, u
n
p , and �; note

that the clauses for the variables, connectives, and other operators are exactly
as in Definition 2.5, relying on the fact that every model of choice under position
uncertainty is also a model of choice under uncertainty (cf. Definition 3.2).

Definition 4.1 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty and s = (w, π) ∈W ×Π,

(SC7) M0, s |= aip iff π(i) = p

(SC8) M0, s |= unp iff U0(w, p) = n

(SC9) M0, s |= �ϕ iff for all π ∈ Π, M0, (w, π) |= ϕ

The formal language introduced above is an extension of L. The constants
that expressed agent-utilities in L can now be defined:

uni =df

∨
p∈P

(aip ∧ unp )

Consequently, we can reuse all the definitions from Table 2 to express that a
given choice is i-admissible or difference admissible in L+. However, we now
also have the additional expressive power that allows us to talk about position
uncertainty, which is crucial for Rawls’ thesis.

Axiomatization The set of validities in L+ is axiomatized by the axioms
and rules in Table 3. Axiom QW (resp. PW) expresses that the truth of a
propositional variable (resp. the utility of a position) depends only on the world-
component of a state. I1-I3 capture interactions between the various modalities.
I1 is an immediate result of the fact that � is a universal modality. I2 follows
from the fact that choices are defined in terms of the world-components of
states, and hence one cannot choose between two states with the same world-
component. I3 captures the property that, if a certain position assignment π
is possible in the model at hand, then there is some state with the same world
component as the current state and the possition assignment π. Finally, PA1
and PA2 (PU1 and PU2) express that every π (U) is a function; PA3 expresses
that every π is surjective.

Theorem 4.2 ` ϕ iff |= ϕ. (Soundness and Completeness)

Proof. Soundness is a matter of routine. For completeness, observe that every
model M0 of choice under position uncertainty can be rewritten as a Kripke-
model of the type MK = 〈S,∼�c ,∼�, V 〉, where S 6= ∅ is a set of states,
∼�c is the equivalence relation that corresponds to the choices in M0, ∼�

is the equivalence relation that corresponds to the worlds in M0, and V :
Q ∪ {aip | i ∈ Agt, p ∈ P} ∪ {up = n | p ∈ P, n ∈ N} → ℘(S) is a valuation
function. Conversely, given suitable conditions on such Kripke-models, we can
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CL Classical Logic

S5 S5 for � ∈ {�,�c ,�}

QW �q ∨�¬q (q ∈ Q)

PW �unp ∨�¬unp (p ∈ P, n ∈ N)

I1 �ϕ→ �c ϕ

I2 �c ϕ→ �ϕ

I3 �
∧
i∈Agt,π(i)=p aip → �

∧
i∈Agt,π(i)=p aip (π ∈ Π∗)

PA1
∨
p∈P aip (i ∈ Agt)

PA2 aip → ¬aip′ (i ∈ Agt, p, p′ ∈ P, p 6= p)

PA3
∨
i∈Agt aip (p ∈ P )

PU1
∨
n∈N unp (p ∈ P )

PU2 unp → ¬ump (p ∈ P, n,m ∈ N,n 6= m)

MP if ` ϕ→ ψ and ` ϕ then ` ψ

NEC if ` ϕ then ` �ϕ

Table 3

(C) if s ∼� s′ and s, s′ ∈
⋂
i∈Agt,π(i)=p V (aip), then s = s′

(CQW) if s ∼� s′, then s ∈ V (q) iff s′ ∈ V (q)

(CPW) if s ∼� s′, then s ∈ V (unp ) iff s′ ∈ V (unp )

(CI2) ∼� ⊆ ∼�c

(CI3) if s ∈
⋂
i∈Agt,π(i)=p V (aip), then ∀s′ ∈ S, ∃s′′ ∈ S:

s′ ∼� s′′ and s′′ ∈
⋂
i∈Agt,π(i)=p V (aip)

(π ∈ Π∗)

(CPA1) ∀i ∈ Agt,∃p ∈ P : s ∈ V (aip)

(CPA2) if s ∈ V (aip), then s 6∈ V (aip′) (p 6= p′)

(CPA3) ∀p ∈ P,∃i ∈ Agt: s ∈ V (aip)

(CPU1) ∀p ∈ P,∃n ∈ N : s ∈ V (unp )

(CPU2) if s ∈ V (unp ), then s 6∈ V (ump ) (n 6= m)

Table 4

rewrite them as models of position uncertainty — cf. Table 4. Proving that,
taken jointly, these conditions ensure translatability to a model of choice under
position uncertainty is a tedious but routine job, which we omit for reasons of
space.

Let MCS be the set of all maximal consistent subsets of L+. Where � ∈
{�,�c ,�} and ∆ ∈ MCS, let ∆� = {�ϕ ∈ L+ | �ϕ ∈ ∆}. Fix a Γ ∈ MCS. Let
MK

Γ = 〈SΓ,∼�c
Γ ,∼�

Γ , VΓ〉, where
1. SΓ is the set of all maximal consistent sets ∆ such that ∆� = Γ�
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2. Where ∆,Θ ∈ SΓ, ∆ ∼�c
Γ Θ iff ∆�c = Θ�c

3. Where ∆,Θ ∈ SΓ, ∆ ∼�
Γ Θ iff ∆� = Θ�

4. VΓ(ϕ) = {∆ ∈ SΓ | ϕ ∈ ∆} for all ϕ ∈ Q ∪ {aip | i ∈ Agt, p ∈ P} ∪ {up =
n | p ∈ P, n ∈ N}
The truth lemma is proven for MK

Γ in the standard way. By an induction
on the complexity of formulas, we can moreover prove that for any s, s′ ∈
SΓ, condition (C) is satisfied. For the other conditions, we can rely on the
corresponding axioms to prove they hold for MK

Γ . In sum, MK
Γ satisfies all the

conditions from Table 4. 2

4.2 Dynamic Operators

In order to express what holds given an update of the set of position assign-
ments, we rely on well-known ideas from dynamic epistemic logic [3,20]. In
particular, we consider pointed updates of pointed models. As we will show in
Section 4.3, we can use the resulting dynamic operators to express what holds
in the Original Position.

Henceforth, an update model is a couple (Π, π), where Π ⊆ Π∗ and π ∈ Π.
Intuitively, the update model expresses the new set of position assignments
that become possible, and the specific position assignment that becomes ac-
tual. Update models are used to change a given pointed model of position
uncertainty, i.e. a model together with a given state (w, π) in that model:

Definition 4.3 Where M0 = 〈W,Π, C0, U0, V 0〉, (w, π) ∈W ×Π, and (Π′, π′)
is an update model: the update of (M0, (w, π)) with (Π′, π′) is (M0, (w, π)) ◦
(Π′, π′) =df (M0

Π′ , (w, π
′)).

Given these conventions, we can introduce dynamic operators [Π, π] for
every update model (Π, π), and interpret them using the following standard
clause:

(SC10) M0, s |= [Π, π]ϕ iff (M0, s) ◦ (Π, π) |= ϕ

In dynamic epistemic logic terminology, our updates are a specific type of
(finitary) ontic updates with an empty precondition. Relying on this observa-
tion, we can easily find reduction axioms for the dynamic operators. These are
listed in Table 5. Given these reduction axioms and Theorem 4.2, we obtain a
sound and strongly complete axiomatization for the extension of L+ with all
dynamic operators of the type [Π, π].

4.3 Rawls’ Thesis in L+

Recall that Π∗ denotes the set of all position assignments. By means of the
dynamic operators [Π∗, π] we can define an operator that expresses what holds
in the Original Position:

��ϕ =df

∧
π∈Π∗

( ∧
i∈Agt,π(i)=p

aip → [Π∗, π]ϕ
)
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RA1 [Π, π]q ↔ q (for all q ∈ Q)

RA2 [Π, π]unp ↔ unp (for all p ∈ P and n ∈ N)

RA3 [Π, π]aip ↔ > if π(i) = p

RA4 [Π, π]aip ↔ ⊥ if π(i) 6= p

RA5 [Π, π]¬ϕ↔ ¬[Π, π]ϕ

RA6 [Π, π](ϕ ∨ ψ)↔ ([Π, π]ϕ ∨ [Π, π]ψ)

RA7 [Π, π]�ϕ↔
∧
π′∈Π�[Π, π′]ϕ (for � ∈ {�,�c ,�})

Table 5
Reduction axioms for the dynamic operators.

Theorem 4.4 Where M0 and M0
∗ are models of choice under position uncer-

tainty, we have: M0, (w, π) |= ��ϕ iff M0
∗, (w, π) |= ϕ.

Proof. For all π ∈ Π, let aπ =
∧
i∈Agt,π(i)=p aip. We have: M0, (w, π) |= ��ϕ iff

[by the definition of ��] for all π′ ∈ Π∗, M
0, (w, π) |= aπ′ → [Π∗, π

′]ϕ iff [since
only aπ is true at M0, (w, π)] M0, (w, π) |= [Π∗, π]ϕ iff [by the semantic clause
for [Π, π]] (M0, (w, π)) ◦ (Π∗, π) |= ϕ iff [by the definition of pointed updates
and since M0

∗ = M0
Π∗

] M0
∗, (w, π) |= ϕ. 2

Theorem 3.6 is now expressible as a theorem in the object-language:

Theorem 4.5 |= Adm∗ ↔ ��Admi. (Rawls’ Thesis in L+)

Proof. Let M0 = 〈W,Π, C0, U0, V 0〉 and s ∈W ×Π. We have: M0, s |= Adm∗
iff [by Theorem 2.7] C(s) ∈ Adm∗(M0) iff [by Theorem 3.6] C∗(s) ∈ Admi(M

0
∗)

iff [by Theorem 2.7] M0
∗, s |= Admi iff [by Theorem 4.4] M0, s |= ��Admi. 2

5 Deontic Logics Based on Fairness

In this last, somewhat more programmatic section, we show the potential of
our models and logic from the viewpoint of deontic logic. We first show how
admissibility based on the other lifting criteria can be formalized in L (Section
5.1). This in turn gives us a general recipe for expressing various other notions
of fairness (Section 5.2), and deontic operators based on them (Section 5.3).

5.1 Other Lifting Criteria

In Section 2 we introduced four lifting criteria that can be used to determine
which choices are admissible in a given choice situation. Moreover, we demon-
strated that the current choice being admissible for i according to the Maximin
lifting (∀∃) can be expressed in the language using object-level formulas. In
Table 6, we give an overview of how admissibility of the current choice for i
can be expressed for the other three lifting criteria from Section 2. The logi-
cal relations between these notions are depicted in Figure 3, where the arrows
stand for logical consequence.
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Abbreviation Definition

u≤ni
∨
m≤n u

m
i

Adm∀∀i
∧
n∈N

(
�c u≤ni → (( �gni → gni ) ∧�(gni → �c uni ))

)
Adm∃∀i

∧
n∈N ( � �c u

≥n
i → �c u

≥n
i )

Adm∃∃i
∧
n∈N ( �gni → �c u

≥n
i )

Table 6

Adm∃∀i

Adm∀∀i Adm∀∃i

Adm∃∃i

Fig. 3.

5.2 Other Notions of Fairness

Recall that the defined operator �� talks about what holds in the Original
Position (cf. Theorem 4.4). We can use this operator and our l-admissibility
formulas to define three additional, distinct notions of fairness admissibility.
That is, the formula ��Adml

i expresses that in the Original Position, if our
standard of rational choice under uncertainty is determined by lifting criterion
l, then the given choice is l-admissible for i. So, if one agrees with Rawls that
fair choices are the choices a rational agent would make in the Original Position,
then ��Adml

i expresses that the given choice is fair (modulo l).
The logical relations depicted in Figure 3 immediately transfer to the cor-

responding notions of fairness admissibility, in view of the following:

Theorem 5.1 Where i ∈ Agt and l, l′ ∈ {∀∀,∀∃,∃∀,∃∃}: ` Adml
i → Adml′

i iff

` ��Adml
i → ��Adm

l′

i .

Proof. For left to right, one should show that �� is a normal modal operator.

For the other direction, suppose that 0 Adml
i → Adml′

i . So there is a model

M0 and state s such that M0, s |= Adml
i and M0, s 6|= Adml′

i . Consider the
model M0

e that differs only from M0 in that, at every state, all the agents
receive the utility that i receives in the corresponding state in M0. In this
model, individual admissibility and fairness admissibility coincide, and hence

M0
e, s |= ��Adm

l
i, M

0
e, s 6|= ��Adm

l′

i . 2

Thus, e.g. fairness admissibility using the Maximin criterion is strictly
stronger than fairness admissibility using criterion ∀∀, which in turn implies
fairness admissibility using ∃∃. In contrast, fairness using ∃∀ is logically in-
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comparable to fairness admissibility with Maximin or with ∀∀.

5.3 Deontic Operators

By employing the familiar Kangerian reduction [1,2,12] we can use our admis-
sibility formulas to define two types of deontic operators:

Oliϕ =df �(Adml
i → ϕ)

Ol∗ϕ =df �(��Adml
i → ϕ)

The formula Oliϕ can be read as “it ought to be that ϕ for i” (where l
determines a particular standard of rational choice under uncertainty). This
contrasts with the formula Ol∗ϕ which can be read as “from the viewpoint of
fairness, it ought to be that ϕ”. Both Oli and Ol∗ are normal modal operators
in virtue of their definition.

Because the admissibility formulas stand in logical relations with each other,
we can expect there to be logical relations between obligation statements as
well. For example, we have:

Theorem 5.2 ` Adml
i → Adml′

i iff ` Ol
′

i ϕ→ Oliϕ.

Proof. Left to right of the equivalence is safely left to the reader. For the other

direction, let ϕ = Adml′

i . Then, the right hand side implies that ` �(Adml
i →

Adml′

i ) and hence, by the T-axiom for �, ` Adml
i → Adml′

i . 2

Consequently, if Adml
i and Adml′

i are incomparable, then Oliϕ and Ol
′

i ϕ are
incomparable as well. We can also expect there to be logical relations between
the individual oughts and fairness oughts, in line with Rawls’ thesis. For ex-
ample, what ought to be for agent i (given the Maximin criterion) and what
ought to be from the viewpoint of fairness coincide in the Original Position:

Theorem 5.3 `
∧
π∈Π∗ �

∧
i∈Agt,π(i)=p aip → (O∀∃i ϕ↔ O∀∃∗ ϕ).

Proof. Note that, if the left hand side of the implication is true in a model
M0 = 〈W,Π, C0, U0, V 0〉, then Π = Π∗. By our earlier results, individual
admissibility and fairness admissibility coincide in such models, and hence so
do the corresponding ought-operators. 2

To summarize, by using a Kangerian reduction, we obtain various kinds of
deontic logics, based on individual standards of rationality and Rawls’ proce-
dural account of fairness. All these logics are fragments of the logic presented
in Section 4. Here we merely sketched the various possibilities this generates;
we leave a full investigation for future work.

6 Conclusion

We have given a logical analysis of Rawls’ thesis that choices motivated by the
Difference Principle coincide with the choices of any rational individual in the
Original Position. In particular, we presented models of choice under position
uncertainty, inspired by simple models for STIT logic. With the help of these
models and a suitable formal language, we showed how to capture Rawls’ thesis
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both in semantic and in syntactic terms. Finally, we demonstrated the potential
of our logical analysis for the study of deontic notions related to fairness.

Future Work We chose to work with a finite set of utility values as this
removes some complexities. However, one may ask to which extent our results
still go through when working with infinite sets of utility values such as N or
R. While the semantic results (e.g. Theorem 3.3) seem easy to generalize to
such richer settings, this is far less obvious on the syntactic side. In particular,
can the language be modified in order to cope with infinite sets of values,
while keeping the logic well-behaved meta-theoretically (e.g. axiomatizable
and compact)?

We focused on the four lifting criteria from Table 1. An open question is
whether it is possible to express more complex lifting criteria, such as e.g. lexi-
cographic preferences. Finally, both the notion of choice and the notion of un-
certainty are agent-independent in our models. A natural generalization would
be to have models where the choices and/or uncertainty are agent-dependent.
Here again, semantics seem relatively easy to obtain, but complexity grows
rapidly at the syntactic level.
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